Problem 39

Tectonic plates are large segments of Earth's crust that move slowly. Suppose one such plate has an average speed of $4.0 \mathrm{~cm} / \mathrm{yr}$. (a) What distance does it move in 1.0 s at this speed? (b) What is its speed in kilometers per million years?

Solution

Part (a)

Multiply the given speed by the appropriate conversion factors to get the desired units.

$$
4.0 \frac{\mathrm{~cm}}{\mathrm{yr}}=4.0 \frac{\mathrm{~cm}}{\mathrm{yr}} \times \frac{1 \mathrm{yy}}{365 \text { days }} \times \frac{1 \text { dax }}{24 \mathrm{~K}} \times \frac{1 \mathrm{~K}}{60 \mathrm{~min}} \times \frac{1 \mathrm{~min}}{60 \mathrm{~s}} \approx 1.3 \times 10^{-7} \frac{\mathrm{~cm}}{\mathrm{~s}}
$$

In 1.0 s the distance the plate moves is roughly

$$
1.3 \times 10^{-7} \mathrm{~cm}=1.3 \times 10^{-7} \mathrm{cmi} \times \frac{1 \mathrm{~nm}}{100 \mathrm{cmI}} \times \frac{10^{9} \mathrm{~nm}}{1 \mathrm{~m}}=1.3 \mathrm{~nm} .
$$

Part (b)

Multiply the given speed by the appropriate conversion factors to get the desired units.

$$
4.0 \frac{\mathrm{~cm}}{\mathrm{yr}}=4.0 \frac{\mathrm{cmr}}{\mathrm{yr}} \times \frac{1 \mathrm{~m}}{100 \mathrm{cmr}} \times \frac{1 \mathrm{~km}}{1000 \mathrm{~m}}=4.0 \times 10^{-5} \frac{\mathrm{~km}}{\mathrm{yr}}
$$

The speed in kilometers per million years is then

$$
4.0 \times 10^{-5} \frac{\mathrm{~km}}{\mathrm{yr}} \times \frac{10^{6}}{10^{6}}=4.0 \times 10^{1} \frac{\mathrm{~km}}{10^{6} \mathrm{yrs}}=40 \frac{\mathrm{~km}}{10^{6} \mathrm{yrs}} .
$$

